
vThere is no permanent place in the world for ugly mathematics ... . It may

be very hard to define mathematical beauty but that is just as true of

beauty of any kind, we may not know quite what we mean by a

beautiful poem, but that does not prevent us from recognising

one when we read it. — G. H. HARDY v

1.1  Introduction

Recall that the notion of relations and functions, domain,

co-domain and range have been introduced in Class XI

along with different types of specific real valued functions

and their graphs. The concept of the term ‘relation’ in

mathematics has been drawn from the meaning of relation

in English language, according to which two objects or

quantities are related if there is a recognisable connection

or link between the two objects or quantities. Let  A be

the set of students of Class XII of a school and B be the

set of students of Class XI of the same school. Then some

of the examples of relations from A to B are

(i) {(a, b) ∈ A × B: a is brother of b},

(ii) {(a, b) ∈ A × B: a is sister of b},

(iii) {(a, b) ∈ A × B: age of a is greater than age of b},

(iv) {(a, b) ∈ A × B: total marks obtained by a in the final examination is less than

the total marks obtained by b in the final examination},

(v) {(a, b) ∈ A × B: a lives in the same locality as b}.  However, abstracting from

this, we define mathematically a relation R from A to B as an arbitrary subset

of A × B.

If (a, b) ∈ R, we say that a is related to b under the relation R and we write as

a R b. In general, (a, b) ∈ R, we do not bother whether there is a recognisable

connection or link between a and b. As seen in Class XI, functions are special kind of

relations.

In this chapter, we will study different types of relations and functions, composition

of functions, invertible functions and binary operations.
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MATHEMATICS2

1.2  Types of Relations

In this section, we would like to study different types of relations. We know that a

relation in a set A is a subset of A × A. Thus, the empty set φ and A × A are two

extreme relations. For illustration, consider a relation R in the set A = {1, 2, 3, 4} given by

R = {(a, b): a – b = 10}. This is the empty set, as no pair (a, b) satisfies the condition

a – b = 10. Similarly, R′ = {(a, b) : | a – b | ≥ 0} is the whole set A × A, as all pairs

(a, b) in A × A satisfy | a – b | ≥ 0. These two extreme examples lead us to the

following definitions.

Definition 1 A relation R in a set A is called empty relation, if no element of A is

related to any element of A, i.e., R = φ ⊂ A × A.

Definition 2  A relation R in a set A is called universal relation, if each element of A

is related to every element of A, i.e., R = A × A.

Both the empty relation and the universal relation are some times called trivial

relations.

Example 1 Let A be the set of all students of a boys school. Show that the relation R

in A given by R = {(a, b) : a is sister of b} is the empty relation and R′ = {(a, b) : the

difference between heights of a and b is less than 3 meters} is the universal relation.

Solution Since the school is boys school, no student of the school can be sister of any

student of the school. Hence, R = φ, showing that R is the empty relation. It is also

obvious that the difference between heights of any two students of the school has to be

less than 3 meters. This shows that R′ = A × A is the universal relation.

Remark In Class XI, we have seen two ways of representing a relation, namely raster

method and set builder method. However, a relation R in the set {1, 2, 3, 4} defined by R

= {(a, b) : b = a + 1} is also expressed as a R b if and only if

b = a + 1 by many authors. We may also use this notation, as and when convenient.

If (a, b) ∈ R, we say that a is related to b and we denote it as a R b.

One of the most important relation, which plays a significant role in Mathematics,

is an equivalence relation. To study equivalence relation, we first consider three

types of relations, namely reflexive, symmetric and transitive.

Definition 3 A relation R in a set A is called

(i) reflexive, if (a, a) ∈ R, for every a
 
∈ A,

(ii) symmetric, if (a
1
, a

2
) ∈ R implies that (a

2
, a

1
)

 
∈ R, for all a

1
, a

2
 ∈ A.

(iii) transitive, if (a
1
, a

2
) ∈ R and (a

2
, a

3
)

 
∈ R implies that (a

1
, a

3
)

 
∈ R, for all a

1
, a

2
,

a
3
 ∈ A.
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RELATIONS AND FUNCTIONS 3

Definition 4 A relation R in a set A is said to be an equivalence relation if R is

reflexive, symmetric and transitive.

Example 2 Let T be the set of all triangles in a plane with R a relation in T given by

R = {(T
1
, T

2
) : T

1
 is congruent to T

2
}. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,

(T
1
, T

2
) ∈ R ⇒ T

1
 is congruent to T

2
 ⇒ T

2
 is congruent to T

1
 ⇒ (T

2
, T

1
) ∈ R. Hence,

R is symmetric. Moreover, (T
1
, T

2
), (T

2
, T

3
) ∈ R ⇒ T

1
 is  congruent to T

2
 and T

2
 is

congruent to T
3
 ⇒ T

1
 is congruent to T

3
 ⇒ (T

1
, T

3
) ∈ R. Therefore, R is an equivalence

relation.

Example 3 Let L be the set of all lines in a plane and R be the relation in L defined as

R = {(L
1
, L

2
) : L

1
 is perpendicular to L

2
}. Show that R is symmetric but neither

reflexive nor transitive.

Solution R is not reflexive, as a line L
1
 can not be perpendicular to itself, i.e., (L

1
, L

1
)

∉ R. R is symmetric as (L
1
, L

2
) ∈ R

⇒ L
1
 is perpendicular to L

2

⇒ L
2
 is perpendicular to L

1

⇒ (L
2
, L

1
) ∈ R.

R is not transitive. Indeed, if L
1
 is perpendicular to L

2
 and

L
2
 is perpendicular to L

3
, then L

1
 can never be perpendicular to

L
3
. In fact, L

1
 is parallel to L

3
, i.e., (L

1
, L

2
) ∈ R, (L

2
, L

3
) ∈ R but (L

1
, L

3
) ∉ R.

Example 4 Show that the relation R in the set {1, 2, 3} given by R = {(1, 1), (2, 2),

(3, 3), (1, 2), (2, 3)} is reflexive but neither symmetric nor transitive.

Solution R is reflexive, since (1, 1), (2, 2) and (3, 3) lie in R. Also, R is not symmetric,

as (1, 2) ∈ R but (2, 1) ∉ R. Similarly, R is not transitive, as (1, 2) ∈ R and (2, 3) ∈ R

but (1, 3) ∉ R.

Example 5 Show that the relation R in the set Z of integers given by

R = {(a, b) : 2 divides a – b}

is an equivalence relation.

Solution R is reflexive, as 2 divides (a – a) for all a ∈ Z. Further, if (a, b) ∈ R, then

2 divides a – b. Therefore, 2 divides b – a. Hence, (b, a) ∈ R, which shows that R is

symmetric. Similarly, if (a, b) ∈ R and (b, c) ∈ R, then a – b and b – c are divisible by

2. Now, a – c = (a – b) + (b – c) is even (Why?). So, (a – c) is divisible by 2. This

shows that R is transitive. Thus, R is an equivalence relation in Z.

Fig 1.1
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MATHEMATICS4

In Example 5, note that all even integers are related to zero, as (0, ± 2), (0, ± 4)

etc., lie in R and no odd integer is related to 0, as (0, ± 1), (0, ± 3) etc., do not lie in R.

Similarly, all odd integers are related to one and no even integer is related to one.

Therefore, the set E of all even integers and the set O of all odd integers are subsets of

Z satisfying following conditions:

(i) All elements of E are related to each other and all elements of O are related to

each other.

(ii) No element of E is related to any element of O and vice-versa.

(iii) E and O are disjoint and Z = E ∪ O.

The subset E is called the equivalence class containing zero and is denoted by

[0]. Similarly, O is the equivalence class containing 1 and is denoted by [1]. Note that

[0] ≠ [1], [0] = [2r] and [1] = [2r + 1], r ∈ Z. Infact, what we have seen above is true

for an arbitrary equivalence relation R in a set X. Given an arbitrary equivalence

relation R in an arbitrary set X, R divides X into mutually disjoint subsets A
i
 called

partitions or subdivisions  of X satisfying:

(i) all elements of A
i
 are related to each other, for all i.

(ii) no element of A
i
 is related to any element of A

j
, i ≠ j.

(iii) ∪ A
j
 = X and A

i
 ∩ A

j
 = φ, i ≠ j.

The subsets A
i
 are called equivalence classes. The interesting part of the situation

is that we can go reverse also. For example, consider a subdivision of the set Z given

by three mutually disjoint subsets A
1
, A

2
 and A

3
 whose union is Z with

A
1
 = {x ∈ Z : x is a multiple of 3} = {..., – 6, – 3, 0, 3, 6, ...}

A
2
 = {x ∈ Z : x – 1 is a multiple of 3} = {..., – 5, – 2, 1, 4, 7, ...}

A
3
 = {x ∈ Z : x – 2 is a multiple of 3} = {..., – 4, – 1, 2, 5, 8, ...}

Define a relation R in Z given by R = {(a, b) : 3 divides a – b}. Following the

arguments similar to those used in Example 5, we can show that R is an equivalence

relation. Also, A
1
 coincides with the set of all integers in Z which are related to zero, A

2

coincides with the set of all integers which are related to 1 and A
3
 coincides with the

set of all integers in Z which are related to 2. Thus, A
1
 = [0], A

2
 = [1] and A

3
 = [2].

In fact, A
1
 = [3r], A

2
 = [3r + 1] and A

3
 = [3r + 2], for all r ∈ Z.

Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by

R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence

relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each

other and all the elements of the subset {2, 4, 6} are related to each other, but no

element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.
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RELATIONS AND FUNCTIONS 5

Solution Given any element a in A, both a and a must be either odd or even, so

that (a, a) ∈ R. Further, (a, b) ∈ R ⇒ both a and b must be either odd or even

⇒ (b, a) ∈ R. Similarly, (a, b) ∈ R and (b, c) ∈ R ⇒ all elements a, b, c, must be

either even or odd simultaneously ⇒ (a, c) ∈ R. Hence, R is an equivalence relation.

Further, all the elements of {1, 3, 5, 7} are related to each other, as all the elements

of this subset are odd. Similarly, all the elements of the subset {2, 4, 6} are related to

each other, as all of them are even. Also, no element of the subset {1, 3, 5, 7} can be

related to any element of {2, 4, 6}, as elements of {1, 3, 5, 7} are odd, while elements

of {2, 4, 6} are even.

EXERCISE 1.1

1. Determine whether each of the following relations are reflexive, symmetric and

transitive:

(i) Relation R in the set A = {1, 2, 3, ..., 13, 14} defined as

R = {(x, y) : 3x – y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y) : y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y) : y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y) : x – y is an integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a)  R = {(x, y) : x and y work at the same place}

(b)  R = {(x, y) : x and y live in the same locality}

(c)  R = {(x, y) : x is exactly 7 cm taller than y}

(d)  R = {(x, y) : x is wife of y}

(e)  R = {(x, y) : x is father of y}

2. Show that the relation R in the set R of real numbers, defined as

R = {(a, b) : a ≤ b2} is neither reflexive nor symmetric nor transitive.

3. Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b) : b = a + 1} is reflexive, symmetric or transitive.

4. Show that the relation R in R defined as R = {(a, b) : a ≤ b}, is reflexive and

transitive but not symmetric.

5. Check whether the relation R in R defined by R = {(a, b) : a ≤ b3} is reflexive,

symmetric or transitive.
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MATHEMATICS6

6. Show that the relation R in  the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is

symmetric but neither reflexive nor transitive.

7. Show that the relation R in the set A of all the books in a library of a college,

given by R = {(x, y) : x and y have same number of pages} is an equivalence

relation.

8. Show that the relation R in the set A = {1, 2, 3, 4, 5} given by

R = {(a, b) : |a – b| is even}, is an equivalence relation. Show that all the

elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are

related to each other. But  no element of {1, 3, 5} is related to any element of {2, 4}.

9. Show that each of the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by

(i) R = {(a, b) : |a – b| is a multiple of 4}

(ii) R = {(a, b) : a = b}

is an equivalence relation. Find the set of all elements related to 1 in each case.

10. Give an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive.

11. Show that the relation R in the set A of points in a plane given by

R = {(P, Q) : distance of the point P from the origin is same as the distance of the

point Q from the origin}, is an equivalence relation. Further, show that the set of

all points related to a point P ≠ (0, 0) is the circle passing through P with origin as

centre.

12. Show that the relation R defined in the set A of all triangles as R = {(T
1
, T

2
) : T

1

is similar to T
2
}, is equivalence relation. Consider three right angle triangles T

1

with sides 3, 4, 5,  T
2
 with sides 5, 12, 13 and T

3
 with sides 6, 8, 10. Which

triangles among T
1
, T

2
 and T

3
 are related?

13. Show that the relation R defined in the set A of all polygons as R = {(P
1
, P

2
) :

P
1
 and P

2
 have same number of sides}, is an equivalence relation. What is the

set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

14. Let L be the set of all lines in XY plane and R be the relation in L defined as

R = {(L
1
, L

2
) : L

1
 is parallel to L

2
}. Show that R is an equivalence relation. Find

the set of all lines related to the line y = 2x + 4.
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15. Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4,4),

(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

16. Let R be the relation in the set N given by R = {(a, b) : a = b – 2, b > 6}. Choose

the correct answer.

(A) (2, 4) ∈ R (B) (3, 8) ∈ R (C) (6, 8) ∈ R (D) (8, 7) ∈ R

1.3  Types of Functions

The notion of a function along with some special functions like identity function, constant

function, polynomial function, rational function, modulus function, signum function etc.

along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been

studied. As the concept of function is of paramount importance in mathematics and

among other  disciplines as well, we would like to extend our study about function from

where we finished earlier. In this section, we would like to study different types of

functions.

Consider the functions  f
1
, f

2
, f

3
 and f

4
 given by the following diagrams.

In Fig 1.2, we observe that the images of distinct elements of X
1 
under the function

f
1
 are distinct, but the image of two distinct elements 1 and 2 of X

1
 under f

2
 is same,

namely b. Further, there are some elements like e and f in X
2
 which are not images of

any element of X
1
 under f

1
, while all elements of X

3
 are images of some elements of X

1

under f
3
. The above observations lead to the following definitions:

Definition 5 A function f : X → Y is defined to be one-one (or injective), if the images

of distinct elements of X under f are distinct, i.e., for every x
1
, x

2
 ∈ X, f (x

1
) = f (x

2
)

implies x
1
 = x

2
. Otherwise, f is called many-one.

The function f
1
 and f

4 
in Fig 1.2 (i) and (iv) are one-one and the function f

2
 and f

3

in Fig 1.2 (ii) and (iii) are many-one.

Definition 6 A function f : X → Y is said to be onto (or surjective), if every element

of Y is the image of some element of X under f, i.e., for every y ∈ Y, there exists an

element x in X such that f (x) = y.

The function f
3
 and f

4 
in Fig 1.2 (iii), (iv) are onto and the function f

1
 in Fig 1.2 (i) is

not onto as elements e, f in X
2
 are not the image of any element in X

1
 under f

1
.
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MATHEMATICS8

Remark  f : X → Y is onto if and only if Range of f = Y.

Definition 7 A function f : X → Y is said to be one-one and onto (or bijective), if f is

both one-one and onto.

The function f
4
 in Fig 1.2 (iv) is one-one and onto.

Example 7 Let A be the set of all 50 students of Class X in a school. Let f : A → N be

function defined by f (x) = roll number of the student x. Show that f is one-one

but not onto.

Solution No two different students of the class can have same roll number. Therefore,

f must be one-one. We can assume without any loss of generality that roll numbers of

students are from 1 to 50. This implies that 51 in N is not roll number of any student of

the class, so that 51 can not be image of any element of X under f. Hence,  f is not onto.

Example 8 Show that the function f : N → N, given by f (x) = 2x, is one-one but not

onto.

Solution The function f is one-one, for f (x
1
) = f (x

2
) ⇒ 2x

1
 = 2x

2
 ⇒ x

1
 = x

2
. Further,

f is not onto, as for 1 ∈ N, there does not exist any x in N such that f (x) = 2x = 1.

Fig 1.2 (i) to (iv)
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RELATIONS AND FUNCTIONS 9

Example 9  Prove that the function f : R → R, given by f (x) = 2x, is one-one and onto.

Solution  f is one-one, as f (x
1
) = f (x

2
) ⇒ 2x

1
 = 2x

2
 ⇒ x

1
 = x

2
. Also, given any real

number y in R, there exists 
2

y
 in R such that f (

2

y
) = 2 . (

2

y
) = y. Hence, f is onto.

Fig 1.3

Example 10  Show that the function f : N → N, given by f (1) = f (2) = 1 and f (x) = x – 1,

for every x > 2, is onto but not one-one.

Solution  f is not one-one, as f (1) = f (2) = 1. But f is onto, as given any y ∈ N, y ≠ 1,

we can choose x as y + 1 such that f (y + 1) = y + 1 – 1 = y. Also for 1 ∈ N, we

have f (1) = 1.

Example 11  Show that the function f : R → R,

defined as f (x) = x2, is neither one-one nor onto.

Solution  Since f (– 1) = 1 = f (1), f is not one-

one. Also, the element – 2 in the co-domain R is

not image of any element x in the domain R

(Why?). Therefore f is not onto.

Example 12  Show that f : N → N, given by

1,if is odd,
( )

1,if is even

x x
f x

x x

+ 
=  − 

is both one-one and onto. Fig 1.4
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MATHEMATICS10

Solution  Suppose f (x
1
) = f (x

2
). Note that if x

1
 is odd and x

2
 is even, then we will have

x
1
 + 1 = x

2
 – 1, i.e., x

2
 – x

1
 = 2 which is impossible. Similarly, the possibility of x

1
 being

even and x
2
 being odd can also be ruled out, using the similar argument. Therefore,

both x
1
 and x

2
 must be either odd or even. Suppose both x

1
 and x

2
 are odd. Then

f (x
1
) = f (x

2
) ⇒ x

1
 + 1 = x

2
 + 1 ⇒ x

1
 = x

2
. Similarly, if both x

1
 and x

2
 are even, then also

f (x
1
) = f (x

2
) ⇒ x

1
 – 1 = x

2
 – 1 ⇒ x

1
 = x

2
. Thus, f is one-one. Also, any odd number

2r + 1 in the co-domain N is the image of 2r + 2 in the domain N and any even number

2r in the co-domain N is the image of 2r – 1 in the domain N. Thus, f is onto.

Example 13 Show that an onto function f : {1, 2, 3} → {1, 2, 3} is always one-one.

Solution Suppose f is not one-one. Then there exists two elements, say 1 and 2 in the

domain whose image in the co-domain is same. Also, the image of 3 under f can be

only one element. Therefore, the range set can have at the most two elements of the

co-domain {1, 2, 3}, showing that f  is not onto, a contradiction. Hence, f must be one-one.

Example 14 Show that a one-one function f : {1, 2, 3} → {1, 2, 3} must be onto.

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different

elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary

finite set X, i.e., a one-one function f : X → X is necessarily onto and an onto map

f : X → X is necessarily one-one, for every finite set X. In contrast to this, Examples 8

and 10 show that for an infinite set, this may not be true. In fact, this is a characteristic

difference between a finite and an infinite set.

EXERCISE 1.2

1. Show that the function f : R
∗∗∗∗∗
 → R

∗∗∗∗∗
 defined by f (x) = 

1

x
 is one-one and onto,

where R
∗∗∗∗∗
 is the set of all non-zero real numbers. Is the result true, if the domain

R
∗∗∗∗∗
 is replaced by N with co-domain being same as R

∗∗∗∗∗
?

2. Check the injectivity and surjectivity of the following functions:

(i) f : N → N given by f (x) = x2

(ii) f : Z → Z given by f (x) = x2

(iii) f : R → R given by f (x) = x2

(iv) f : N → N given by f (x) = x3

(v) f : Z → Z given by f (x) = x3

3. Prove that the Greatest Integer Function f : R → R, given by f (x) = [x], is neither

one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Reprint 2025-26



RELATIONS AND FUNCTIONS 11

4. Show that the Modulus Function f : R → R, given by f (x) = | x |, is neither one-

one nor onto, where | x | is x, if x is positive or 0 and | x | is – x, if x is negative.

5. Show that the Signum Function f : R → R, given by

f x

x

x

x

( )

,

,

� ,

=
>
=
<







1 0

0 0

1 0

if

if

if

is neither one-one nor onto.

6. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function

from A to B. Show that f is one-one.

7. In each of the following cases, state whether the function is one-one, onto or

bijective. Justify your answer.

(i) f : R → R defined by f (x) = 3 – 4x

(ii) f : R → R defined by f (x) = 1 + x2

8. Let A and B be sets. Show that f : A × B → B × A such that f (a, b) = (b, a) is

bijective function.

9. Let f : N → N be defined by f (n) = 

n
n

n
n

+








1

2

2

,

,

if is odd

if is even

 for all n ∈ N.

State whether the function f is bijective. Justify your answer.

10. Let A = R – {3} and B = R – {1}. Consider the function  f : A → B defined by

f (x) = 
2

3

x

x

− 
 

− 
. Is f one-one and onto? Justify your answer.

11. Let f : R → R be defined as f(x) = x4. Choose the correct answer.

(A) f is one-one onto (B) f is many-one onto

(C) f is one-one but not onto (D) f is neither one-one nor onto.

12. Let f : R → R be defined as f (x) = 3x. Choose the correct answer.

(A) f is one-one onto (B) f is many-one onto

(C) f is one-one but not onto (D) f is neither one-one nor onto.
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1.4  Composition of Functions and Invertible Function

Definition 8 Let f : A → B and g : B → C be two functions. Then the composition of

f and g, denoted by gof, is defined as the function gof : A → C given by

gof (x) = g(f (x)), ∀  x ∈ A.

Fig 1.5

Example 15 Let f : {2, 3, 4, 5} → {3, 4, 5, 9} and g : {3, 4, 5, 9} → {7, 11, 15} be

functions defined as f (2) = 3, f (3) = 4, f (4) =  f (5) = 5 and g (3) = g (4) = 7 and

g (5) =  g (9) = 11. Find gof.

Solution We have gof (2) =  g (f (2)) = g (3) = 7, gof (3) =  g (f (3)) = g (4) = 7,

gof (4) =  g (f (4)) = g (5) = 11 and gof (5) =  g (5) = 11.

Example 16 Find gof and fog, if f : R → R and g : R → R are given by f (x) = cos x

and g (x) = 3x2. Show that gof  ≠ fog.

Solution We have gof (x) =  g (f (x)) = g (cos x) = 3 (cos x)2 = 3 cos2 x. Similarly,

fog (x) =  f (g (x)) =  f (3x2) = cos (3x2). Note that 3cos2 x ≠ cos 3x2, for x = 0. Hence,

gof ≠ fog.

Definition 9 A function f : X → Y is defined to be invertible, if there exists a function

g : Y → X such that  gof = I
X
 and fog = I

Y
. The function g is called the inverse of f  and

is denoted by f –1.

Thus, if f is invertible, then f must be one-one and onto and conversely, if f is

one-one and onto, then f must be invertible. This fact significantly helps for proving a

function f to be invertible by showing that f is one-one and onto, specially when the

actual inverse of f is not to be determined.

Example 17 Let f : N → Y be a function defined as f (x) = 4x + 3, where,

Y = {y ∈ N : y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4x + 3,

for some x in the domain N . This shows that 
( 3)

4

y
x

−
= . Define g : Y → N  by
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( 3)
( )

4

y
g y

−
= . Now, gof (x) = g (f (x)) = g (4x + 3) = 

(4 3 3)

4

x
x

+ −
=  and

fog (y) = f (g (y)) = f
( 3) 4 ( 3)

3
4 4

y y− −  = + 
 

 = y – 3 + 3 = y. This shows that gof = I
N

and fog = I
Y
, which implies that f is invertible and g is the inverse of f.

Miscellaneous Examples

Example 18 If R
1

 and R
2
 are equivalence relations in a set A, show that R

1
 ∩ R

2
 is

also an equivalence relation.

Solution Since R
1

 and R
2
 are equivalence relations, (a, a) ∈ R

1
, and (a, a) ∈ R

2
 ∀ a ∈ A.

This implies that (a, a) ∈ R
1 

∩ R
2
, ∀ a, showing R

1 
∩ R

2
 is reflexive. Further,

(a, b) ∈ R
1 
∩ R

2
 ⇒ (a, b) ∈ R

1
 and (a, b) ∈ R

2
 ⇒ (b, a) ∈ R

1
 and (b, a) ∈ R

2
 ⇒

(b, a) ∈ R
1
 ∩ R

2
, hence, R

1 
∩ R

2
 is symmetric. Similarly, (a, b) ∈ R

1
 ∩ R

2
 and

(b, c) ∈ R
1 
∩ R

2
 ⇒ (a, c) ∈ R

1
 and (a, c) ∈ R

2
 ⇒ (a, c) ∈ R

1 
∩ R

2
. This shows that

R
1 
∩ R

2
 is transitive. Thus, R

1 
∩ R

2
 is an equivalence relation.

Example 19 Let R be a relation on the set A of ordered pairs of positive integers

defined by (x, y) R (u, v) if  and only if xv = yu. Show that R is an equivalence relation.

Solution Clearly, (x, y) R (x, y), ∀ (x, y) ∈ A, since xy = yx. This shows that R is

reflexive. Further, (x, y) R (u, v) ⇒ xv = yu ⇒ uy = vx and hence (u, v) R (x, y). This

shows that R is symmetric. Similarly, (x, y) R (u, v) and (u, v) R (a, b) ⇒ xv = yu and

ub = va ⇒ 
a a

xv yu
u u

= ⇒ 
b a

xv yu
v u

=  ⇒ xb = ya and hence (x, y) R (a, b). Thus, R

is transitive. Thus, R is an equivalence relation.

Example 20 Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let R
1
 be a relation in X given

by R
1
 = {(x, y) : x – y is divisible by 3} and R

2
 be another relation on X given by

R
2
 = {(x, y): {x, y} ⊂ {1, 4, 7}} or {x, y} ⊂ {2, 5, 8} or {x, y} ⊂ {3, 6, 9}}. Show that

R
1
 = R

2
.

Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9} is

that difference between any two elements of these sets is a multiple of 3. Therefore,

(x, y) ∈ R
1
 ⇒ x – y is a multiple of 3 ⇒ {x, y} ⊂ {1, 4, 7} or {x, y} ⊂ {2, 5, 8}

or {x, y} ⊂ {3, 6, 9} ⇒ (x, y) ∈ R
2
. Hence, R

1
 ⊂ R

2
. Similarly, {x, y} ∈ R

2
 ⇒ {x, y}
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⊂ {1, 4, 7} or {x, y} ⊂ {2, 5, 8} or  {x, y} ⊂ {3, 6, 9} ⇒ x – y is divisible by

3 ⇒ {x, y} ∈ R
1
. This shows that R

2
 ⊂ R

1
. Hence, R

1
 = R

2
.

Example 21 Let f : X → Y be a function. Define a relation R in X given by

R = {(a, b): f(a) = f(b)}. Examine whether R is an equivalence relation or not.

Solution For every a ∈ X, (a, a) ∈ R, since f (a) = f (a), showing that R is reflexive.

Similarly, (a, b) ∈ R ⇒ f (a) = f (b) ⇒ f (b) = f (a) ⇒ (b, a) ∈ R. Therefore, R is

symmetric. Further, (a, b) ∈ R and (b, c) ∈ R ⇒ f (a) = f (b) and f (b) = f (c) ⇒ f (a)

= f (c) ⇒ (a, c) ∈ R, which implies that R is transitive. Hence, R is an equivalence

relation.

Example 22 Find the number of all one-one functions from set A = {1, 2, 3} to itself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation on three

symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to itself is

same as total number of permutations on three symbols 1, 2, 3 which is 3! = 6.

Example 23 Let A = {1, 2, 3}. Then show that  the number of relations containing (1, 2)

and (2, 3) which are reflexive and transitive but not symmetric is three.

Solution The smallest relation R
1
 containing (1, 2) and (2, 3) which is reflexive and

transitive but not symmetric is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Now, if we add

the pair (2, 1) to R
1
 to get R

2
, then the relation R

2
 will be reflexive, transitive but not

symmetric. Similarly, we can obtain R
3
 by adding (3, 2) to R

1
 to get the desired relation.

However, we can not add two pairs (2, 1), (3, 2) or single pair (3, 1) to R
1
 at a time, as

by doing so, we will be forced to add the remaining pair in order to maintain transitivity

and in the process, the relation will become symmetric also which is not required. Thus,

the total number of desired relations is three.

Example 24  Show that the number of equivalence relation in the set {1, 2, 3} containing

(1, 2) and (2, 1) is two.

Solution The smallest equivalence relation R
1
 containing (1, 2) and (2, 1) is {(1, 1),

(2, 2), (3, 3), (1, 2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3), (3, 2),

(1, 3) and (3, 1). If we add any one, say (2, 3) to R
1
, then for symmetry we must add

(3, 2) also and now for transitivity we are forced to add (1, 3) and (3, 1). Thus, the only

equivalence relation bigger than R
1
 is the universal relation. This shows that the total

number of equivalence relations containing (1, 2) and (2, 1) is two.

Example 25 Consider the identity function I
N
 : N → N defined as I

N
 (x) = x ∀ x ∈ N.

Show that although I
N
 is onto but I

N
 + I

N
 : N → N defined as

(I
N
 + I

N
) (x) = I

N
 (x) + I

N
 (x) = x + x = 2x is not onto.
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Solution Clearly I
N
 is onto. But I

N
 + I

N
 is not onto, as we can find an element 3

in the co-domain N such that there does not exist any x in the domain N with

(I
N
 + I

N
) (x) = 2x = 3.

Example 26 Consider a function f : 0,
2

π 
→  

R given by f (x) = sin x and

g : 0,
2

π 
→  

R given by g(x) = cos x. Show that f and g are one-one, but f + g is not

one-one.

Solution Since for any two distinct elements x
1
 and x

2
 in 0,

2

π 
  

, sin x
1
 ≠ sin x

2
 and

cos x
1
 ≠ cos x

2
, both f and g must be one-one. But (f + g) (0) = sin 0 + cos 0 = 1 and

(f + g)
2

π 
 
 

 = sin cos 1
2 2

π π
+ = . Therefore, f + g is not one-one.

Miscellaneous Exercise on Chapter 1

1. Show that the function f : R → {x ∈ R : – 1 < x < 1} defined by ( )
1 | |

x
f x

x
=
+

,

x ∈ R is one one and onto function.

2. Show that the function f : R → R given by f (x) = x3 is injective.

3. Given a non empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation

on P(X)? Justify your answer.

4. Find the number of all onto functions from the set {1, 2, 3,......, n} to itself.

5. Let A = {– 1, 0, 1, 2}, B = {– 4, – 2, 0, 2} and f, g : A → B be functions defined

by f (x) = x2 – x, x ∈ A and 
1

( ) 2 1,
2

g x x= − −  x ∈ A. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f : A → B and

g : A → B such that f (a) = g (a) ∀ a ∈ A, are called equal functions).
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6. Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are

reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4

7. Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is

(A) 1 (B) 2 (C) 3 (D) 4

Summary

In this chapter, we studied different types of relations and equivalence relation,

composition of functions, invertible functions and binary operations. The main features

of this chapter are as follows:

® Empty relation is the relation R in X given by R = φ ⊂ X × X.

® Universal relation is the relation R in X given by R = X × X.

® Reflexive relation R in X is a relation with (a, a) ∈ R ∀ a ∈ X.

® Symmetric relation R in X is a relation satisfying (a, b) ∈ R implies (b, a) ∈ R.

® Transitive relation R in X is a relation satisfying (a, b) ∈ R and (b, c) ∈ R

implies that (a, c) ∈ R.

® Equivalence relation R in X is a relation which is reflexive, symmetric and

transitive.

® Equivalence class [a] containing a ∈ X for an equivalence relation R in X is

the subset of X containing all elements b related to a.

® A function f : X → Y is one-one (or injective) if

f (x
1
) = f (x

2
) ⇒ x

1
 = x

2
 ∀  x

1
, x

2
 ∈ X.

® A function f : X → Y is onto (or surjective) if given any y ∈ Y, ∃ x ∈ X such

that f (x) = y.

® A function f : X → Y is one-one and onto (or bijective), if f is both one-one

and onto.

® Given a finite set X, a function f : X → X is one-one (respectively onto) if and

only if f is onto (respectively one-one). This is the characteristic property of a

finite set. This is not true for infinite set
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—vvvvv—

Historical Note

The concept of function has evolved over a long period of time starting from
R. Descartes (1596-1650), who used the word ‘function’ in his manuscript
“Geometrie” in 1637 to mean some positive integral power xn of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. James
Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae Quadratura”
(1667) considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later G. W.
Leibnitz (1646-1716) in his manuscript “Methodus tangentium inversa, seu  de
functionibus” written in 1673 used the word ‘function’ to mean a quantity varying
from point to point on a curve such as the coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean
quantities that depend on a variable. He was the first to use the phrase ‘function
of x’. John Bernoulli (1667-1748) used the notation φx for the first time in 1718 to
indicate a function of x. But the general adoption of symbols like f, F, φ, ψ ... to
represent functions was made by Leonhard Euler (1707-1783) in 1734 in the first
part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange
(1736-1813) published his manuscripts “Theorie des functions analytiques” in
1793, where he discussed  about analytic function and used the notion f (x), F(x),
φ (x) etc. for different function of x. Subsequently, Lejeunne Dirichlet
(1805-1859) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
developed by Georg Cantor (1845-1918). The set theoretic definition of function
known to us presently is simply an abstraction of the definition given by Dirichlet
in a rigorous manner.
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